Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Molecules ; 27(16)2022 Aug 11.
Article in English | MEDLINE | ID: covidwho-1987901

ABSTRACT

The emergence of the SARS-CoV-2 coronavirus pandemic in China in late 2019 led to the fast development of efficient therapeutics. Of the major structural proteins encoded by the SARS-CoV-2 genome, the SPIKE (S) protein has attracted considerable research interest because of the central role it plays in virus entry into host cells. Therefore, to date, most immunization strategies aim at inducing neutralizing antibodies against the surface viral S protein. The SARS-CoV-2 S protein is heavily glycosylated with 22 predicted N-glycosylation consensus sites as well as numerous mucin-type O-glycosylation sites. As a consequence, O- and N-glycosylations of this viral protein have received particular attention. Glycans N-linked to the S protein are mainly exposed at the surface and form a shield-masking specific epitope to escape the virus antigenic recognition. In this work, the N-glycosylation status of the S protein within virus-like particles (VLPs) produced in Nicotiana benthamiana (N. benthamiana) was investigated using a glycoproteomic approach. We show that 20 among the 22 predicted N-glycosylation sites are dominated by complex plant N-glycans and one carries oligomannoses. This suggests that the SARS-CoV-2 S protein produced in N. benthamiana adopts an overall 3D structure similar to that of recombinant homologues produced in mammalian cells.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Glycosylation , Humans , Mammals/metabolism , Polysaccharides/chemistry , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus , Tobacco/genetics , Tobacco/metabolism , Virion
2.
Plant Biotechnol J ; 20(7): 1363-1372, 2022 07.
Article in English | MEDLINE | ID: covidwho-1759237

ABSTRACT

We have investigated the use of transient expression to produce virus-like particles (VLPs) of severe acute respiratory syndrome coronavirus 2, the causative agent of COVID-19, in Nicotiana benthamiana. Expression of a native form of the spike (S) protein, either alone or in combination with the envelope (E) and membrane (M) proteins, all of which were directed to the plant membranes via their native sequences, was assessed. The full-length S protein, together with degradation products, could be detected in total protein extracts from infiltrated leaves in both cases. Particles with a characteristic 'crown-shaped' or 'spiky' structure could be purified by density gradient centrifugation. Enzyme-linked immunosorbent assays using anti-S antibodies showed that threefold higher levels of VLPs containing the full-length S protein were obtained by infiltration with S alone, compared to co-infiltration of S with M and E. The S protein within the VLPs could be cleaved by furin in vitro and the particles showed reactivity with serum from recovering COVID-19 patients, but not with human serum taken before the pandemic. These studies show that the native S protein expressed in plants has biological properties similar to those of the parent virus. We show that the approach undertaken is suitable for the production of VLPs from emerging strains and we anticipate that the material will be suitable for functional studies of the S protein, including the assessment of the effects of specific mutations. As the plant-made material is noninfectious, it does not have to be handled under conditions of high containment.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/genetics , Pandemics , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
J Virol Methods ; 300: 114372, 2022 02.
Article in English | MEDLINE | ID: covidwho-1654861

ABSTRACT

The current gold standard technique for SARS-CoV-2 diagnostics is hydrolysis probe-based RT-qPCR. Reliable testing requires reliable control reagents to monitor the efficiency of RNA extraction, reverse transcription and PCR amplification. Here we describe a custom RNA packaging system from the plant virus cowpea mosaic virus to produce virus-like particles that encapsidate specifically designed portions of the genome of SARS-CoV-2, the causative agent of COVID-19. These encapsidated mimics are highly stable particles which can be used either to spike patient swab samples for use as an in-tube extraction and reaction positive control in multiplex RT-qPCR, or alone as a side-by-side mock-positive control reagent. The selection of sequences in the packaged pseudogenomes ensures that these mimics are compatible with the most commonly used primer/probe combinations for SARS-CoV-2 diagnostics (including German Berlin Charité Hospital, American CDC, and Chinese CDC protocols). The plant transient expression system used to produce these encapsidated mimics is inherently low-cost, and sufficiently high-yielding that a single laboratory-scale preparation can provide enough positive control reagent for millions of tests.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Indicators and Reagents , RNA, Viral/genetics , Sensitivity and Specificity
4.
Plant Biotechnol J ; 19(10): 1921-1936, 2021 10.
Article in English | MEDLINE | ID: covidwho-1452892

ABSTRACT

The fight against infectious diseases often focuses on epidemics and pandemics, which demand urgent resources and command attention from the health authorities and media. However, the vast majority of deaths caused by infectious diseases occur in endemic zones, particularly in developing countries, placing a disproportionate burden on underfunded health systems and often requiring international interventions. The provision of vaccines and other biologics is hampered not only by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, but also by challenges caused by distribution and storage, particularly in regions without a complete cold chain. In this review article, we consider the potential of molecular farming to address the challenges of endemic and re-emerging diseases, focusing on edible plants for the development of oral drugs. Key recent developments in this field include successful clinical trials based on orally delivered dried leaves of Artemisia annua against malarial parasite strains resistant to artemisinin combination therapy, the ability to produce clinical-grade protein drugs in leaves to treat infectious diseases and the long-term storage of protein drugs in dried leaves at ambient temperatures. Recent FDA approval of the first orally delivered protein drug encapsulated in plant cells to treat peanut allergy has opened the door for the development of affordable oral drugs that can be manufactured and distributed in remote areas without cold storage infrastructure and that eliminate the need for expensive purification steps and sterile delivery by injection.


Subject(s)
Artemisia annua , Communicable Diseases , Pharmaceutical Preparations , Animals , Humans , Molecular Farming , Plants, Edible
5.
Plant Biotechnol J ; 19(10): 1901-1920, 2021 10.
Article in English | MEDLINE | ID: covidwho-1285038

ABSTRACT

Infectious diseases, also known as transmissible or communicable diseases, are caused by pathogens or parasites that spread in communities by direct contact with infected individuals or contaminated materials, through droplets and aerosols, or via vectors such as insects. Such diseases cause ˜17% of all human deaths and their management and control places an immense burden on healthcare systems worldwide. Traditional approaches for the prevention and control of infectious diseases include vaccination programmes, hygiene measures and drugs that suppress the pathogen, treat the disease symptoms or attenuate aggressive reactions of the host immune system. The provision of vaccines and biologic drugs such as antibodies is hampered by the high cost and limited scalability of traditional manufacturing platforms based on microbial and animal cells, particularly in developing countries where infectious diseases are prevalent and poorly controlled. Molecular farming, which uses plants for protein expression, is a promising strategy to address the drawbacks of current manufacturing platforms. In this review article, we consider the potential of molecular farming to address healthcare demands for the most prevalent and important epidemic and pandemic diseases, focussing on recent outbreaks of high-mortality coronavirus infections and diseases that disproportionately affect the developing world.


Subject(s)
COVID-19 , Communicable Diseases , Communicable Diseases/epidemiology , Humans , Pandemics/prevention & control , SARS-CoV-2
6.
Eur J Pharm Biopharm ; 155: 103-111, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-837756

ABSTRACT

The harsh conditions of the gastro-intestinal (GI) milieu pose a major barrier to the oral delivery of protein nanocages. Here we studied the stability of Nudaurelia capensis omega virus (NωV) virus-like particles (VLPs) in simulated GI fluids. NωV VLPs capsids and procapsids were transiently expressed in plants, the VLPs were incubated in various simulated GI fluids and their stability was determined by gel electrophoresis, density gradient ultracentrifugation and transmission electron microscopy (TEM). The results showed that the capsids were highly resistant to simulated gastric fluids at pH ≥ 3. Even under the harshest conditions, which consisted of a pepsin solution at pH 1.2, NωV capsids remained assembled as VLPs, though some digestion of the coat protein occurred. Moreover, 80.8% (±10.2%) stability was measured for NωV capsids upon 4 h incubation in simulated intestinal fluids. The high resistance of this protein cage to digestion and denaturation can be attributed to its distinctively compact structure. The more porous form of the VLPs, the procapsid, was less stable under all conditions. Our results suggest that NωV VLPs capsids are likely to endure transit through the GI tract, designating them as promising candidate protein nanocages for oral drug delivery.


Subject(s)
Capsid/metabolism , Insect Viruses , Nanoparticles , Plants/metabolism , RNA Viruses , Animals , Body Fluids , Capsid Proteins/biosynthesis , Centrifugation, Density Gradient , Drug Delivery Systems , Gastrointestinal Tract/metabolism , Humans , Hydrogen-Ion Concentration , Microscopy, Electron, Transmission , Pepsin A/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL